High-temperature Expansions for Learning Models of Nonnegative Data

نویسنده

  • Oliver B. Downs
چکیده

Recent work has exploited boundedness of data in the unsupervised learning of new types of generative model. For nonnegative data it was recently shown that the maximum-entropy generative model is a Nonnegative Boltzmann Distribution not a Gaussian distribution, when the model is constrained to match the first and second order statistics of the data. Learning for practical sized problems is made difficult by the need to compute expectations under the model distribution. The computational cost of Markov chain Monte Carlo methods and low fidelity of naive mean field techniques has led to increasing interest in advanced mean field theories and variational methods. Here I present a secondorder mean-field approximation for the Nonnegative Boltzmann Machine model, obtained using a “high-temperature” expansion. The theory is tested on learning a bimodal 2-dimensional model, a high-dimensional translationally invariant distribution, and a generative model for handwritten digits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Nonnegative Data with Clumping at Zero: A Survey

Applications in which data take nonnegative values but have a substantial proportion of values at zero occur in many disciplines. The modeling of such “clumped-at-zero” or “zero-inflated” data is challenging. We survey models that have been proposed. We consider cases in which the response for the non-zero observations is continuous and in which it is discrete. For the continuous and then the d...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

Transient Natural Convection Flow on an Isothermal Vertical Wall at High Prandtl Numbers: Second-Order Approximation

The method of matched asymptotic expansions, which has been used in previous studies of steady natural convection flow, is extended here to transient natural convection flow at high Prandtl number (Pr). Second-order expansion solutions, valid for large Prandtl numbers, are presented for the transient natural convection flow near a vertical surface which undergoes a step change in temperature. T...

متن کامل

Evaluating machine learning methods and satellite images to estimate combined climatic indices

The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000